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Motivation: Fusion Materials

▪ Plasma facing materials (PFMs): Tungsten

▪ Low hydrogen solubility, low sputtering yield, high melting point, and 

high thermal conductivity

▪ He irradiation modifies near surface microstructure: Increase in 

retention of tritium, fuzz-like nanostructure

▪ Divertor of ITER: Nucleation of bubbles, retention of hydrogen 

isotopes, and production of high-Z dust

▪ ‘Fuzz’: Temperature (1000-2300K), He energy (∼10eV), and He flux

Ref: G. De Temmerman et al., J. Vac. 

Sci. Technol. A 30, 041306 (2012); S. 

Kajita et al., Nucl. Fusion 49, 095005 

(2009).
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State of Knowledge in the Field
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Ref: S. Kajita et al., Journal of Nuclear 

Materials 418, 152–158 (2011).
Ref: K. Wang et al., Sci. Rep. 7, 42315 (2017); M Miyamoto

et al., Phys. Scr. T159, 014028 (2014).

▪ Bubble density in nanobubble layer and bubble diameter depend on the

surface temperature and fluence

▪ The bubbles grow via trap mutation reaction. Bubbles are favorable to

grow for bubble concentration ~10-40/ W

▪ Surface diffusion, loop punching, and bubble bursting leads to pinholes,

dips, and protrusion formation on the surface

▪ Subsurface bubble growth further propagates the surface morphological

evolution; the edge becomes sharper and the dip becomes deeper in

this process.



▪ Viscoelastic model: Viscoelastic W flow from below bubble layer drives fuzz growth. [S. I. Krasheninnikov, Phys.

Scr. T145, 014040 (2011).]

▪ Large scale MD simulations: Successfully predicted subsurface He bubble dynamics but maximum timescale

captured so far is O(103ns) while onset of fuzz-formation happens O(103s). For a typical MD run time on ANL

Mira (O(2 × 107 atoms) simulation on O(2 × 104) cores), to reach onset of fuzz formation requires O(300 Million

years) wallclock time. [K. D. Hammond et al., Fusion Sci. Technol. 71(1), 7-21 (2017).]

▪ KMC simulations†: KMC extended the MD results from ns-Å to s-µm scale, but unable to reach the

experimental hr-mm range.

▪ MD and MC hybrid simulations: Semi-2D MD and MC hybrid simulations have captured the fuzz formation.

State of Knowledge in the Field
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†A. Lasa et al., Europhys. Lett. 105, 25002 (2014); A. M. Ito et al., Nucl. Fusion 55, 073013 (2015).
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▪ Continuum domain model is based on following assumptions:

▪ Nanobubble region is a homogeneous layer of spherical bubbles with uniform size and number density;

▪ Nanobubble region is under constant stress due to overpressurized bubble; 

▪ Subsurface bubble dynamics is not included in the current model.

▪ Model parameterization relies on material and thermophysical properties obtained through either atomic-scale 

simulations or experimental results available in the literature [Ref: K. D. Hammond et al., Acta Materialia (Article 

in press); S. E. Donnelly, Radiat. Eff. 90, 1-47(1985) ]
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Model
▪ Continuity equation:

▪ Surface mass flux (Js):
▪ Interstitial mass flux (JI):

▪ Thermodynamic driving force:

▪ Mass-flux:

▪ Young-Laplace equation for overpressurized bubble

▪ Average microscopic stress:

▪ Sputtering loss (Jsp):
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Expt: t = 0 min Results: 
Benchmarked against Experiments 

▪ Experiment: A medium-flux RF plasma source

(2.7×1020 He m-2 s-1) was used to expose

ITER-grade W specimens to ion fluences

ranging between 5×1023 – 1.2×1025 He m-2

(corresponding to exposure times ranging

between 30 min. to 12 hrs.). For each test, the

sample temperature (840 °C) and incident ion

energy (75 eV) were identical

▪ Simulation: The W surface morphology was

perturbed with small amplitude normal wave

random perturbations (with an rms value, 10-4,

much lower than polished W surface). The

sample temperature and incident ion energy

were identical with experiments. Helium

retention was assumed to be ~1%

Sim: t = 0 min
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Results: Benchmarked against Experiments

Expt: t = 30 min Expt: t = 80 min

Sim: t = 80 minSim: t = 60 min
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Ref: K.B. Woller et al., J of Nucl. Mater 463, 289–293 (2015).

Expt: t = 80 min

▪ Helium concentration reaches saturation level with negative exponential growth (approximately in 1500 s) 

▪ Bubble bursting/pinhole formation appears to play an important in surface morphological evolution
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Summary & Future Work

▪ An atomistically-informed, continuous-domain model is developed to describe the initial stages of

surface deformation, leading to fuzz formation in helium-ion-irradiated tungsten and the simulation

results are benchmarked against experimental studies

▪ A spectral collocation method and discrete fast Fourier transforms are used to compute spatial profile of

the field-variables (curvature, stress, etc.). For time stepping, an operator splitting-based semi-implicit

spectral method with adaptive time step size is used to carry out self-consistent dynamical

simulations. For a typical simulation run time on HPC (O(1mm × 1mm surface) simulation on single core),

to reach onset of fuzz formation requires O(10 hours) wallclock time

▪ Continuum domain model can qualitatively capture nanotendril formation at high temperature; the

model predicts the growth rate of nanotendrils reasonably well and nanotendril widths are quantitatively

comparable (∼200 nm) with those observed in experimental studies

▪ Subsurface bubble dynamics and bubble bursting, redeposition of sputtered W, etc. soon to be included

in the model

▪ Model will be benchmarked against measurements from carefully designed experiments at different

temperature and gas implantation conditions


